extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C22xA4) = A4xDic10 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 120 | 6- | C10.1(C2^2xA4) | 480,1035 |
C10.2(C22xA4) = C4xD5xA4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 60 | 6 | C10.2(C2^2xA4) | 480,1036 |
C10.3(C22xA4) = A4xD20 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 60 | 6+ | C10.3(C2^2xA4) | 480,1037 |
C10.4(C22xA4) = C2xDic5.A4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 160 | | C10.4(C2^2xA4) | 480,1038 |
C10.5(C22xA4) = C2xD5xSL2(F3) | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 80 | | C10.5(C2^2xA4) | 480,1039 |
C10.6(C22xA4) = SL2(F3).11D10 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 80 | 4 | C10.6(C2^2xA4) | 480,1040 |
C10.7(C22xA4) = Dic10.A4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 120 | 4+ | C10.7(C2^2xA4) | 480,1041 |
C10.8(C22xA4) = D5xC4.A4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 80 | 4 | C10.8(C2^2xA4) | 480,1042 |
C10.9(C22xA4) = D20.A4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 80 | 4- | C10.9(C2^2xA4) | 480,1043 |
C10.10(C22xA4) = C2xA4xDic5 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 120 | | C10.10(C2^2xA4) | 480,1044 |
C10.11(C22xA4) = A4xC5:D4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C10 | 60 | 6 | C10.11(C2^2xA4) | 480,1045 |
C10.12(C22xA4) = A4xC2xC20 | central extension (φ=1) | 120 | | C10.12(C2^2xA4) | 480,1126 |
C10.13(C22xA4) = C5xD4xA4 | central extension (φ=1) | 60 | 6 | C10.13(C2^2xA4) | 480,1127 |
C10.14(C22xA4) = C2xC10xSL2(F3) | central extension (φ=1) | 160 | | C10.14(C2^2xA4) | 480,1128 |
C10.15(C22xA4) = C5xQ8xA4 | central extension (φ=1) | 120 | 6 | C10.15(C2^2xA4) | 480,1129 |
C10.16(C22xA4) = C10xC4.A4 | central extension (φ=1) | 160 | | C10.16(C2^2xA4) | 480,1130 |
C10.17(C22xA4) = C5xQ8.A4 | central extension (φ=1) | 120 | 4 | C10.17(C2^2xA4) | 480,1131 |
C10.18(C22xA4) = C5xD4.A4 | central extension (φ=1) | 80 | 4 | C10.18(C2^2xA4) | 480,1132 |